VLSI and Embedded Laboratory

B. Tech. (Electronics and Communication)Department of Electronics and CommunicationC. G. Patel Institute of Technology, BardoliUka Tarsadia University, Bardoli

VLSI and Embedded Laboratory

Objective of Laboratory:

To have hands on training on different VLSI and Embedded Circuit Design and Analysis.

Student learning outcomes / objectives:

To have practical exposure to the basic device and kits used to analyze VLSI Circuits and Embedded Systems.

Practical List:

Sr. No.	VLSI and Embedded Laboratory	Hours
1	Write and simulate the VHDL code for all the basic gates.	2
2	Write and simulate the VHDL code for half adder and full adder.	2
3	Write and simulate the VHDL code for 8*1multiplexer and 3*8 Decoder.	4
4	Write and simulate the VHDL code for magnitude comparator.	2
5	Write and simulate the VHDL code for SR and D Flip flop.	2
6	Write and simulate the VHDL code for JK and T Flip flop.	2
7	Write and simulate the VHDL code for shift register.	2
8	Write and simulate the VHDL code for Up Down Counter.	2
9	Write and simulate the VHDL code for Arithmetic and logical unit.	2
10	Write and simulate the VHDL code for Four Bit Adder Using One bit adder Component.	2
11	Introduction: Microcontroller Vs Microprocessor, ARM7.	2
12	Write an ALP to perform following task:1. Transfer data from one register to another.2. Store two numbers in registers and perform addition, subtraction, multiplication, AND, OR, EX-OR operation. Use instruction of ARM7.	2
13	Write an ALP to perform following task:1. Addition of data in a single array.2. Addition of 5 (32 bit) data stored in two arrays and stores the result in third array.	2

	3. Compare the data from the given array and store the	
	smallest number in the register.	
14	Write an ALP to perform following task:	2
	1. Addition of data in a single array.	
	2. Addition of 5 (32 bit) data stored in two arrays and	
	stores the result in third array.	
	3. Compare the data from the given array and store the	
	smallest number in the register.	
15	Write an ALP to arrange given numbers in Ascending and	2
	Descending order. Use instruction of ARM7.	
16	Write an ALP to illustrate the use of IMPORT and EXPORT	2
	Subroutines.	
17	Write an embedded 'C' program to blink 4 LED's connected	2
	on LPC2148 board on pin P1.16. to P1.19.	
18	Write an embedded 'C' program to display 0 to 9 on 7-	2
	segment LED connected on LPC2148 board on pin P0.0 to	
	P0.6 in common anode configuration.	
19	Write an embedded 'C' program to rotate stepper motor	2
	connected on LPC2148 board at pin P0.0 to P0.3 in clockwise	
	direction.	
20	Write an embedded 'C' program to display "CGPIT" on LCD	2
	connected to ARM processor.	

Laboratory Equipments

VLSI Trainer Kits

Embedded System Trainer Kits

Laboratory Equipments

Microprocessor Trainer Kits

Components Available in Laboratory

1	Power Supply
2	Function Generator
3	CRO
4	Digital Multimeter
5	Educational Practice Board for ARM 7, ARM 7 IDE, LCD Keyboard Interfacing Kit, General Purpose Interfacing Kit
6	TK Based VLSI Trainer Board, CPLD Daughter Board, FPGA Daughter Board, Real Time Validation Tool
7	8085 Microprocessor Kit with 16x2 LCD Display XPO-85 (Quantity :12)
8	8259 i.e. Periware
9	8255 i.e. Periware
10	8279 i.e. Periware
11	8251 i.e. Periware
12	8251 i.e. Periware
13	Traffic Light of Two Intersections
14	Stepper Motor and 12 V DC Motor Interface Card
15	Scanning Techniques illustrating 8x8 LED Matrix
16	Temperature Controller with 8 bit DAC
17	8-bit 8-channel ADC (0809) and DAC (0808)